186,132 research outputs found

    Investigations of Optical Coherence Properties in an Erbium-doped Silicate Fiber for Quantum State Storage

    Full text link
    We studied optical coherence properties of the 1.53 μ\mum telecommunication transition in an Er3+^{3+}-doped silicate optical fiber through spectral holeburning and photon echoes. We find decoherence times of up to 3.8 μ\mus at a magnetic field of 2.2 Tesla and a temperature of 150 mK. A strong magnetic-field dependent optical dephasing was observed and is believed to arise from an interaction between the electronic Er3+^{3+} spin and the magnetic moment of tunneling modes in the glass. Furthermore, we observed fine-structure in the Erbium holeburning spectrum originating from superhyperfine interaction with 27^{27}Al host nuclei. Our results show that Er3+^{3+}-doped silicate fibers are promising material candidates for quantum state storage

    Optical characterization of Bi2_2Se3_3 in a magnetic field: infrared evidence for magnetoelectric coupling in a topological insulator material

    Full text link
    We present an infrared magneto-optical study of the highly thermoelectric narrow-gap semiconductor Bi2_2Se3_3. Far-infrared and mid-infrared (IR) reflectance and transmission measurements have been performed in magnetic fields oriented both parallel and perpendicular to the trigonal cc axis of this layered material, and supplemented with UV-visible ellipsometry to obtain the optical conductivity σ1(ω)\sigma_1(\omega). With lowering of temperature we observe narrowing of the Drude conductivity due to reduced quasiparticle scattering, as well as the increase in the absorption edge due to direct electronic transitions. Magnetic fields H∥cH \parallel c dramatically renormalize and asymmetrically broaden the strongest far-IR optical phonon, indicating interaction of the phonon with the continuum free-carrier spectrum and significant magnetoelectric coupling. For the perpendicular field orientation, electronic absorption is enhanced, and the plasma edge is slightly shifted to higher energies. In both cases the direct transition energy is softened in magnetic field.Comment: Final versio

    Anisotropic Electronic Structure of the Kondo Semiconductor CeFe2Al10 Studied by Optical Conductivity

    Full text link
    We report temperature-dependent polarized optical conductivity [σ(ω)\sigma(\omega)] spectra of CeFe2_2Al10_{10}, which is a reference material for CeRu2_2Al10_{10} and CeOs2_2Al10_{10} with an anomalous magnetic transition at 28 K. The σ(ω)\sigma(\omega) spectrum along the b-axis differs greatly from that in the acac-plane, indicating that this material has an anisotropic electronic structure. At low temperatures, in all axes, a shoulder structure due to the optical transition across the hybridization gap between the conduction band and the localized 4f4f states, namely cc-ff hybridization, appears at 55 meV. However, the gap opening temperature and the temperature of appearance of the quasiparticle Drude weight are strongly anisotropic indicating the anisotropic Kondo temperature. The strong anisotropic nature in both electronic structure and Kondo temperature is considered to be relevant the anomalous magnetic phase transition in CeRu2_2Al10_{10} and CeOs2_2Al10_{10}.Comment: 5 pages, 4 figure

    Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride

    Get PDF
    We performed calculations of electronic, optical and transport properties of graphene on hBN with realistic moir\'e patterns. The latter are produced by structural relaxation using a fully atomistic model. This relaxation turns out to be crucially important for electronic properties. We describe experimentally observed features such as additional Dirac points and the "Hofstadter butterfly" structure of energy levels in a magnetic field. We find that the electronic structure is sensitive to many-body renormalization of the local energy gap.Comment: 5 pages, 6 figures. Supplementary material is available at http://www.theorphys.science.ru.nl/people/yuan/attachments/sm_hbn.pd

    Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride

    Get PDF
    We performed calculations of electronic, optical and transport properties of graphene on hBN with realistic moir\'e patterns. The latter are produced by structural relaxation using a fully atomistic model. This relaxation turns out to be crucially important for electronic properties. We describe experimentally observed features such as additional Dirac points and the "Hofstadter butterfly" structure of energy levels in a magnetic field. We find that the electronic structure is sensitive to many-body renormalization of the local energy gap.Comment: 5 pages, 6 figures. Supplementary material is available at http://www.theorphys.science.ru.nl/people/yuan/attachments/sm_hbn.pd

    A Low Temperature Nonlinear Optical Rotational Anisotropy Spectrometer for the Determination of Crystallographic and Electronic Symmetries

    Get PDF
    Nonlinear optical generation from a crystalline material can reveal the symmetries of both its lattice structure and underlying ordered electronic phases and can therefore be exploited as a complementary technique to diffraction based scattering probes. Although this technique has been successfully used to study the lattice and magnetic structures of systems such as semiconductor surfaces, multiferroic crystals, magnetic thin films and multilayers, challenging technical requirements have prevented its application to the plethora of complex electronic phases found in strongly correlated electron systems. These requirements include an ability to probe small bulk single crystals at the micron length scale, a need for sensitivity to the entire nonlinear optical susceptibility tensor, oblique light incidence reflection geometry and incident light frequency tunability among others. These measurements are further complicated by the need for extreme sample environments such as ultra low temperatures, high magnetic fields or high pressures. In this review we present a novel experimental construction using a rotating light scattering plane that meets all the aforementioned requirements. We demonstrate the efficacy of our scheme by making symmetry measurements on a micron scale facet of a small bulk single crystal of Sr2_2IrO4_4 using optical second and third harmonic generation.Comment: 8 pages, 5 figure
    • …
    corecore